子19缺失、wgd缺失和tp53改变(图4a)。使用贝叶斯方法,单个患者可以根据他们治疗前的分子基因型被分成不同的组,其发生egfrt790m耐药的几率非常不同(图4b)。例如,在非wgd肿瘤中,发生t790m耐药性的概率在%到%之间,这可能意味着序贯治疗第一代/第二代到第三代egfrtki可能是这些患者(我们队列中11%的患者)可行的临床策略。这些特征的预测能力需要在更大的队列中进一步验证。然而,这些结果说明了数据驱动的治疗算法是如何通过真实世界的证据得出的,并可能有助于为个别患者定义最佳的排序策略。
我们的研究首次对egfrtki耐药的基因组和转录图谱进行了全面和综合的分析。值得注意的是,我们的数据显示,到目前为止,血统的可塑性在一定程度上被低估了。尽管在tki耐药后有1%到3%的患者有组织转化的报道,但我们发现在t790m?肿瘤中,腺癌标志物(napsin-a和ttf-1)普遍丢失,同时非tru亚型(pi和pp)明显富集。虽然缺乏配对的基线样本是我们研究的局限性,但与治疗单纯的egfr突变的非小细胞肺癌的比较表明,腺癌谱系标志的丢失,特别是在t790m?疾病中,可能代表了慢性egfrtki暴露导致的早期去分化事件。t790m?疾病更显著的基因组改变有tp53突变(86%比50%)、3q扩增(57%比13%)和met改变(19%比3%),这进一步导致了t790m?的可塑性和耐药性。
临床上特别感兴趣的是t790m?队列中的免疫热亚群,它代表了一组患者的ttp明显较短,其特征是gep评分高,pd-l1过度表达,以及富含趋化因子的免疫抑制微环境。与我们的发现一致,回顾性分析表明pd-l1的高表达与低应答率和pfs之间的关系,提示“炎症性”tme介导对egfrtki的原发性耐药。最近,抑制egfr信号被发现可以耗竭treg和增加ifnγ信号,支持“炎性”的tme之间的联系,认为这是一种适应性变化,可能会削弱对靶向治疗的反应。我们的数据进一步表明,炎性的tme可能发生在原发或继发耐药时,并由cd8+t细胞(肿瘤抗原特异性和/或旁观者)、treg和mdsc可变地组成。最后,观察到ido1的高表达,特别是在t790m?免疫热肿瘤中,伴随犬尿氨酸的过度表达(kynu;图2b),暗示ido途径在维持treg激活和在肿瘤亚群中的免疫抑制环境中起作用。最近,通过